
 CHEP 03, La Jolla, Mar 24-28, 2003

Fine-Grained Authorization for Job and Resource Management Using
Akenti and the Globus Toolkit®

M. R. Thompson, A. Essiari
LBNL, Berkeley, CA 94705

K. Keahey, V, Welch, S. Lang
ANL, Argonne IL 60439
B. Liu
University of Houston, Houston, TX 77204

As the Grid paradigm is adopted as a standard way of sharing remote resources across organizational domains, the need for fine-
grained access control to these resources increases. This paper presents an authorization solution for job submission and control,
developed as part of the National Fusion Collaboratory, that uses the Globus Toolkit 2 and the Akenti authorization service in
order to perform fine-grained authorization of job and resource management requests in a Grid environment. At job startup, it
allows the system to evaluate a user’s Resource Specification Language request against authorization policies on resource usage
(determining how many CPUs or memory a user can use on a given resource or which executables the user can run). Furthermore,
based on authorization policies, it allows other virtual organization members to manage the user’s job.

1. INTRODUCTION
Users from different organizations who are

geographically dispersed but are working together to solve
a common problem, or related problems in a common
domain, typically organize themselves into virtual
organizations (VOs) [5]. The VO defines who its members
are and (possibly) assigns roles or attributes to the
members. The VO also arranges with the owners of
various resources for VO member access. The resources
may consist of compute platforms, storage elements,
scientific instruments, data or services.

The National Fusion Collaboratory (NFC) [8] is an
example of such a VO. The NFC is building a FusionGrid
to provide computational and data services to its members.
Because the Globus Toolkit (GT2) [6] is so widely used as
Grid middleware, the NFC has chosen to use GT2 for
remote job submission and secure access to its common
data servers.

While object-oriented distributed programming
frameworks such as Legion [4] and CORBA provide very
fine-grained access-control at the level of object methods,
GT2 provides a coarse-grained “admission control”
facility and leaves fine-grained access control up to the
resource provider. This simple approach is entirely
acceptable for the initial stages of a Grid, when there is a
limited set of potential users who negotiate access directly
with the resource providers, but it does not scale to large
numbers of resource hosts and users.

Hence, GT2 access control mechanisms must be
extended to meet the FusionGrid’s security needs. The
solution we present here is to integrate the Akenti
authorization service [9] with the Globus Toolkit.

Section 2 of this paper describes typical usage scenarios
for VO Grid use. Section 3 is a brief overview of how
authorization is currently handled in GT2. Section 4
introduces the Akenti authorization service. Section 5
describes our integration of the Globus Toolkit job
manager and Akenti authorization and how this model can

be extended to other authorization decision functions.
Section 6 presents our conclusions and outlines future
work.

2. USAGE SCENARIOS AND
REQUIREMENTS

Many different resource-sharing scenarios exist in a
Grid envirnoment. The shared resources may be basic
compute resources (e.g., compute cycles and storage
elements); sophisticated computer-controlled instruments;
data elements such as files and information in databases;
or services provided by specialized application programs.
Individual resource providers may want detailed control
over user access, or they may want to delegate most of the
control to the VO. Multiple independent entities, called
stakeholders, may be entitled to some control over a
resource. For example, application code may be provided
by one person or organization and run on a computer
provided by an independent organization.

The use case that we are addressing in the NFC is that
of an application service provider [12] where both the
code and the compute resources are owned by the same
entity. Selected hosts within the NFC allow remote users
to execute specific codes. The FusionGrid has several sites
that are providing access to a limited number of
application codes. Thus, the sites want to restrict which
executables may be run. Since these are computationally
intensive codes that may take a long time to complete, the
ability to query and control a job is important. Thus jobs
become dynamic resources that need access control. The
NFC wants to allow some of its users access to
development versions of the code and tools in addition to
the service codes. It may also want to allow some users a
higher quality of service.

In order to support fine-grained access, the access
control decision function (ADF) must be able to base its
access decisions on policy written in a moderately
expressive policy language. Such a language must be easy

TUB2006

2 CHEP 03, La Jolla, Mar 24-28, 2003

for stakeholders to understand and must be extensible to
allow for many types of resources and conditions.

In summary, the challenging access control
requirements that we address are as follows:

• Providing flexible policy-driven access control
• Federating policy from several independent sources
• Allowing long-running jobs to be treated as objects

whose management is subject to access control
decisions

• Integrating with the current GT2 job submission
mechanism with a minimum disturbance for the
client or the service provider

3. AUTHORIZATION IN THE GLOBUS
TOOLKIT

We assume the following model for job submission and
control. An interaction is initiated by a user submitting a
request to start a job, including the job description,
accompanied by the user’s Grid credentials, in the form of
an X.509 certificate [7]. In the current case this is just an
identity certificate and asserts no other attributes about the
user. This request is then evaluated by an access control
decision function (ADF) which may be called from
several different access control enforcement functions
(AEFs) located in the resource management modules. If
the request is authorized, it is started under a local
credential (i.e., userid).

During the job execution, a VO user may submit
management requests composed of a management action
(e.g., request information, suspend or resume a job, cancel
a job). The resource manager may decide to perform the
action or to pass it on to the locally executing job.

In order to perform these transactions, the Globus
Resource Acquisition and Management (GRAM) [2]
system is used. GRAM has two major software
components: the gatekeeper and the job manager. The
gatekeeper is responsible for translating Grid credentials
to local credentials (e.g. mapping the user to a local
account based on their Grid credentials) and creating a job
manager instance to handle the specific job invocation
request. The job manager is a Grid service which
instantiates and then provides for the ability to manage a
job. Figure 1 shows the interaction of these elements; in
this section we explain their roles and limitations.

3.1. Gatekeeper
The GRAM gatekeeper is responsible for authenticating

the requesting Grid user, authorizing a job invocation
request, and determining the account in which the job
should be run. Authentication, done using the Globus
Toolkit’s Grid Security Infrastructure (GSI) [1], verifies
the validity of the presented Grid credentials, the user’s
possession of those credentials, and the user's Grid
identity as indicated by those credentials. Authorization is
based on the user’s Grid identity, the site’s trust policy,

and the site grid-mapfile, which maps each allowed Grid
identity to a local userid.

The gatekeeper then starts a job manager instance,
executing with the user’s local credential. This mode of
operation requires the user to have an account on the
resource and implements fine-grained access enforcement
by privileges of the account.

Client
User Cred

Gatekeeper
• authenticate user
• authorize user against

grid-mapfile
• map grid credential to

local credential
Root Cred

Job Manager
• no authorization on job

start
• limited authorization on

job control
User Cred

Application
Service

User Cred

Job submit

Job control

Create a grid
service

Start an application
service

Figure 1 Interaction of the main components of GRAM

3.2. Job Manager
The GRAM job manager parses the user’s request,

including the job description, and calls the resource’s job
control system (e.g., exec, LSF, PBS) to initiate the user’s
job. During the job execution the job manager monitors its
progress and handles job control requests (e.g., suspend,
stop, query) from the user. Since the job manager instance
is run under the user’s local credential, as defined by the
user’s account, the operating system, and local job control
system are able to enforce local policy on the job manager
and user job by the policy tied to that account.

The job manager does no authorization on job startup
because the gatekeeper has already done so. Once the job
has been started, however, the job manager accepts,
authenticates, and authorizes management requests on the
job.

In GT2, the authorization policy on these management
requests is static and simple: the Grid identity of the user
making the request must match the Grid identity of the
user who initiated the job.

4. AKENTI AUTHORIZATION SERVICE
As noted in Section 1, the authorization provided by

GT2 is coarse grained. Because of the large user
community, the NFC needed to add fine-grained
authorization for job execution and management. Rather
than writing an authorization function from scratch, the

TIB2006

 CHEP 03, La Jolla, Mar 24-28, 2003

In GT2, the gatekeeper acts as the resource gateway: it
allows access only to Grid users who appear in the grid-
mapfile. In our current work we make the job manager an
AEF as well, by enabling it to enforce policy about fine-
grained job access.

NFC decided to use the Akenti authorization service [10].
Akenti is an established authorization service designed to
make access decisions for distributed resources controlled
by multiple stakeholders. Akenti assumes that all the
parties involved in authorization have X.509 certificates
that can be used for identification and authentication.
Authorization policy for a resource is represented as a set
of (possibly) distributed certificates digitally signed by
unrelated stakeholders from different domains. These
policy certificates are independently created by authorized
stakeholders. When an authorization decision needs to be
made, the Akenti policy engine gathers all the relevant
certificates for the user and the resource, verifies them,
and determines the user’s rights with respect to the
resource.

Resource
Gateway

(AEF)

1 2

4

5

6

3

7

Policy
Certificates

Resources

Akenti
(ADF)

Client

 Figure 2 Akenti authorization model in pull mode

4.1. Authorization Model
The Akenti model consists of resources that are being

accessed via a resource gateway (the AEF) by clients.
These clients connect to the resource gateway using the
TLS [3] handshake protocol, or something equivalent, to
present authenticated X.509 certificates. The stakeholders
for the resources express access constraints on the
resources as a set of signed certificates, a few of which are
self-signed and must be stored on a known secure host
(probably the resource gateway machine), but most of
which can be stored remotely. These certificates express
the attributes a user must have in order to get specific
rights to a resource, identify the stakeholders who are
trusted to create use-condition statements, and determines
the attribute authorities who can attest to a user’s
attributes. At the time of the resource access, the resource
gatekeeper (AEF) asks a trusted Akenti server (ADF)
what access the user has to the resource. The Akenti
server finds all the relevant certificates, verifies that each
one is signed by an acceptable issuer, evaluates them, and
returns the allowed access.

4.2. Akenti Policy Language
Akenti policy is expressed in XML and stored in three

types of signed certificates: policy certificates, use-
condition certificates and Akenti attribute certificates [11].
Policy certificates specify the sources of authority for the
resource. Use-condition certificates contain the constraints
that control access to a resource. Attribute certificates
assign attributes to users that are needed to satisfy the use
constraints. The root policy certificate is self-signed and
defines the root of trust for the resource domain, so it must
be kept in a known secure place. The remainder of the
certificates can be stored at distributed sites, since their
signatures will be evaluated whenever they are used.

Several models for authorization systems have been
proposed. One is the pull model, in which the user
presents only his authenticated identity to the gatekeeper,
who finds (pulls) the policy information for the resource
and evaluates the user’s access. Another model is the push
model, in which the user presents one or more tokens or
assertions that grant the holder specific rights to the
resource. In this model, the gatekeeper must verify that the
user has the rights to use the tokens and then must
interpret the rights that have been presented.

Use-condition certificates contain a Boolean expression
specifying what attributes a client must have to be allowed
a specific set of actions on the resource. Attributes can be
components of the client’s DN, including the Common
Name (CN), which can be used to grant actions to a single
individual. They can be AKENTI attributes such as role,
group and training level or they can be SYSTEM attributes
such as time of day or load factor on a machine. Thus a
constraint might look like the following:

In the application shown in Figure 2, the pull model is

used in order to allow applications to transparently use
Akenti authorization over standard GSI/TLS connections
that transport and verify X.509 certificates. Akenti can
also be used in a push model because it returns its
authorization decision as a signed capability certificate
containing the subject’s distinguished name (DN), public
key, the certification authority (CA) that signed for this
name, the name of the resource, and the subject’s rights.
These capability certificates are short-lived in order to
avoid the problems of revocation.

(DN=/O=DOEGrids/OU=People/CN=Jane Doe) ||
(role=developer && (time>5pm) && (time<8am)) ||
(group=clients && executable=TRANSP)
actions=start

This constraint allows Jane Doe to start any job at any

time, allows clients who have the role of developer to run
any executable between 5 pm and 8 am, and allows
members of the client’s group to run a specific service,
TRANSP, at any time.

TUB2006

4 CHEP 03, La Jolla, Mar 24-28, 2003

The X.509 DN attribute is taken from the client’s X.509
certificate. The AKENTI attributes, role and group, are
defined by Akenti attribute certificates. Time and
executable are SYSTEM attributes and may need to be
evaluated by the AEF. In this case, Akenti will return the
required attribute value pairs along with the actions that
would be allowed if they are satisfied, as conditional
actions.

Multiple use-conditions can apply to the same resource.
Privileges granted by use-conditions are additive with one
major exception. If a use-condition is marked critical, a
client must satisfy it, or the client will be granted no
access, regardless of any other use-conditions.

Policy certificates define the basic trust relationships
and are used to bootstrap and to provide closure for the
trust chain by specifying the sources of authority for a
resource. The sources of authority are the CAs, who are
trusted to sign X.509 certificates for all the principals
involved in an authorization decision; attribute authorities,
who can issue attribute certificates for a user, and the
stakeholders, who are allowed to issue use-condition
certificates for the resource. Whenever a certificate is
used, the Akenti policy engine checks that it has been
signed by an acceptable issuer and that the signature
verifies. The CAs are represented by their X.509
certificates, which provide a trusted copy of their public
keys and information about where they publish certificates
and certificate revocation lists. Each stakeholder is
represented by a DN and the DN of the CA that issued a
certificate for that name, and a list of places, specified by
URLs, where the stakeholder puts the use-condition
certificates issued. A policy certificate may optionally
contain a list of URLs in which to search for attribute
certificates.

Authorization policy is associated with individual or
collections of resources. Hierarchical resources can inherit
policy from parents. Allowing a policy to apply to
collections of resources is necessary to scale to more than
a handful of resources.

5. INTEGRATION OF AKENTI AND JOB
MANAGER

In this section we describe how we integrated the
Globus Toolkit job manager with Akenti.

5.1. Code Integration
While the Globus gatekeeper currently acts as the AEF

and ADF for job submission, we decided to add our
callout for fine-grained access control to the GT2 job
manager [9] for two reasons. First, the job manager is the
component that parses the Resource Specification
Language (RSL) [2] of the job request. RSL consists of
attribute value pairs specifying job parameters such as
executable description (name, location, etc.), and resource
requirements (number of CPUs to be used, maximum
allowable memory, etc.). These were the attributes that we
wanted to control. Second, the job manager decides and

enforces access policy for job control. Requests to
terminate, signal or query a job go directly to the job
manager via the job handle URL that is returned on job
creation. In GT2 the job manager allows these actions
only if the requestor has the same Grid id as the job
initiator. These were the other actions we wanted to
control.

Specifically, our additions consisted of the following:
• Authorization callout API. We designed a callout

API to integrate an ADF with the job manager. The
callout passes to the ADF module all the
information relevant to access control, such as the
credential of the user requesting a remote job, the
credential of the user who originally started the job,
the action to be performed (such as start or cancel a
job), a unique job identifier, and the job description
expressed in RSL. The ADF responds through the
callout API with either success or an appropriate
authorization error. This call is made whenever an
action needs to be authorized, that is, before
instantiating a job and before canceling, querying,
or signaling a running job.

• Policy-based authorization for job management. As
discussed in Section 3, each job management
request other than job start is currently authorized
by the job manager so that only the user that started
a job is allowed to manage it. We modified the
authorization in GRAM to enable Grid users other
than the job initiator to manage the job based on
policy with decisions rendered through the
authorization callout API. In addition to changes to
the authorization model, this modification also
required extensions to the GRAM client to allow
one user to signal a job manager instance owned by
another user.

• RSL parameters. We extended RSL to add the
“jobtag” parameter allowing the user to submit a
job to a specific job management group. If the user
does not provide a job tag on start, a default one
will be assigned to the job.

• Error reporting. We further extended the GRAM
protocol to return authorization errors describing
reasons for authorization denial as well as
authorization system failures.

In order to provide for easy integration of third-party
authorization solutions, the job manager allows callouts to
be configurable at run time. Callouts can be configured
through either a configuration file or an API call.
Configuration consists of specifying an abstract callout
name, the path to the dynamic library that implements the
callout, and the symbol for the callout in the library.
Callouts are invoked through runtime loading of dynamic
libraries using GNU Libtool’s dlopen-like portability
library. Arguments to the callout are passed using the C
variable argument list facility. The insertion of callout
points into the job manager required defining a GRAM
authorization callout type, that is, an abstract callout type,
the exact arguments passed to the callout and a set of

TIB2006

 CHEP 03, La Jolla, Mar 24-28, 2003

errors the callout may return. These callout points are
configured by parsing a global configuration file.

• Right to start a specific binary – important and can
be enforced by the job manager

• Right to limit CPU cycles for a specific job –
currently not important, would need to be enforced
by the run queue manager (PBS)

5.2. Authorization Policy
When the job manager calls Akenti, the access decision

is based on the Akenti authorization policy. Akenti
organizes policy according to the resources that are being
controlled. Hence, the first step in writing policy is to
determine the set of resources. In the case of fine-grained
control of Globus Toolkit job submission, the things that
can be controlled are the right to execute a job on a
machine, which binaries may be executed, RSL
parameters such as requested CPU time, requested
scheduling queue, and the rights to stop resume, cancel, or
query currently executing jobs.

• Right to restrict a user or group to a total CPU limit
per month – may be important, requires an
accounting system

• Right to choose an execution queue – may be
important for service guarantees

• Need for at least one class of administrative users
who can kill any job – important

• Need for multiple administrative classes that can
kill a restricted set of jobs – possibly useful but
requires users to understand job classes.

From the Akenti policy point of view these resources
can be loosely grouped into machine/site, executables, and
jobs. A major consideration in writing a comprehensible
policy is to have as little of it as possible. Determining the

From the viewpoint of the FusionGrid resource
provider, some of these are more important than others
and some are hard to enforce:

• Right to submit any job to machine – already
enforced by gatekeeper

<?xml version="1.0" encoding="US-ASCII"?>
<AkentiCertificate xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation='http://www-itg.lbl.gov/Akenti/docs/AkentiCertificate.xsd'>
 <SignablePart>
 <Header Type="Policy" SignatureDigestAlg="RSA-MD5" CanonAlg="Ak1CanAlg" Version="2">
 <UID>"rocky.lbl.gov#104b8965#Thu May 03 17:15:30 PDT 2001"</UID>
 <Issuer>
 <UserDN>/O=doesciencegrid.org/OU=People/CN=Mary R. Thompson</UserDN>
 <CADN>/DC=net/DC=es/OU=Certificate Authorities/OU=DOE Science Grid/CN=pki1</CADN>
 </Issuer>
 <ValidityPeriod Begin="010504001529Z" End="050504001529Z"/>
 </Header>
 <PolicyCert>
 <ResourceName>TRANSP</ResourceName>
 <CAInfo>
 <CADN>/DC=net/DC=es/OU=Certificate Authorities/OU=DOE Science Grid/CN=pki1</CADN>
 <X509Certificate>
 MIICvzCCAiigAwIBAgIBETANBgkqhkiG9w0BAQUFADBbMRkwFwYDVQQKExBET0Ug...
 </X509Certificate>
 <IdDirs> <URL>file:/p/fusiongrid/idCerts</URL></IdDirs>
 <CRLDirs> <URL>ldap://ldap.doegrids.org</URL></CRLDirs>
 </CAInfo>
 <UseCondIssuerGroup>
 <Principal>
 <UserDN>/O=doesciencegrid.org/OU=People/CN=Mary R. Thompson/UserDN>
 <CADN>/DC=net/DC=es/OU=Certificate Authorities/OU=DOE Science Grid/CN=pki1</CADN>
 </Principal>
 <Principal>
 <UserDN>/O=doesciencegrid.org/OU=People/CN=Lew Randerson</UserDN>
 <CADN>/DC=net/DC=es/OU=Certificate Authorities/OU=DOE Science Grid/CN=pki></CADN>
 </Principal>
 <URL>file:/p/fusiongrid/certs</URL>
 </UseCondIssuerGroup>
 <AttrDirs>
 <URL>file:/p/fusiongrid/certs</URL>
 </AttrDirs>
 <CacheTime>3600</CacheTime>
 </PolicyCert>
 </SignablePart>
 <Signature>This is a fake signature</Signature>
</AkentiCertificate>

Figure 3 Top-level policy certificate for TRANSP

TUB2006

6 CHEP 03, La Jolla, Mar 24-28, 2003

/p/fusiongrid/trpstart TRANSP/production optimal grouping of resources that can be controlled by a

single policy is essential for a concise policy. Since Akenti
resources and policies can be hierarchical, the obvious top
level is the machine or in the case of a site with several
server machines, the site. Policy written for top levels can
be inherited by lower levels, so any coarse-grained
requirements, for example, the acceptable CAs to issue the
client certificates or membership in a VO can be specified
there. In the case of the FusionGrid two independent sites
are running different codes. One of the sites has two
machines dedicated to running its code: a production
machine and a more development-oriented machine.

/p/fusiongrid/trspkill TRANSP/production
/p/fusiongrid/new/trspstart
 TRANPS/development
jobclass /p/fusiongrid/jobpolicy

The complete policy certificate at the top level is shown in
Figure 3. It specifies the trusted CAs and where they
publish certificates and CRLs, <CAInfo>; the stakeholders
and where they publish their use-conditions,
<UseCondIssuerGroup>; directories to be searched for
attribute certificates, <AttrDirs>; and the maximum
caching time for any certificates used in an authorization
decision, <CacheTime>. The header of this certificate, and
all Akenti certificates, has the type of the certificate, a
unique id for the certificate, the issuer who signed the
certificate, and a validity period.

The grouping of executables depends on how many
different individual programs are to be run and whether
there are obvious classes of programs that can be
controlled by a common policy. In the FusionGrid each site
supports one main production code. There may also be
development versions of the code that should be accessible
to a more limited group of users. In addition, users need
access to a few simple Unix utilities, such as /bin/date, in
order to quickly test that their remote access configuration
is working correctly.

Four user groups are granted specific rights: general –
used for middleware testers, clients – physicists who are
allowed to run the production code, developers – who can
run experimental versions of the code, and administrators
– who can control other users’ jobs. Users get the rights of
all the groups of which they are members. Treating jobs as resources is a bit tricky because they are

dynamically created objects for which we want to write a
static policy. However, it is logical to control jobs based on
some characteristic of the job, rather than by specific job
instance. Running jobs could be identified by their initiator
or by the file that is being executed, or they could be
placed into an administrative category when they are
started. The last choice lets us write policy about who can
control jobs in a given category and gives us the most
flexibility over how we want to control jobs. It did require
an addition to the original RSL parameters to allow a user
to specify a job category when the job was started. The
basic Globus Toolkit policy of letting whoever started a job
control it requires continued support

Use conditions are written for each class of executables
and job category. A portion of a use condition that grants
users in the client group to start the production code is
shown in Figure 4. Note that the AttributeInfo element
includes the authority that is allowed to assert that a user is
in the client group.

<UseConditionCert critical="false" scope="sub-
tree">
 <ResourceName>TRANSP/production</ResourceName>
 <Condition>
 <Constraint>group = clients</Constraint>
 <AttributeInfo type="AKENTI">
 <AttrName>group</AttrName>
 AttrValue>clients</AttrValue>
 <Principal>
 <UserDN>/O=doesciencegrid.org
 /OU=People/CN=Lew Randerson
 </UserDN>
 <CADN>/DC=net/DC=es/OU=Certificate
 Authorities/OU=DOE Science Grid/
 CN=pki1
 </CADN>
 </Principal>
 </AttributeInfo>
 </Constraint>
 </Condition>

 <Rights>start</Rights>
</UseConditionCert>

Figure 4 Use-condition fragment for production code

5.3. Policy for the FusionGrid
The policy we designed to control access to the

TRANSP [13] code running at the Princeton Plasma
Physics Laboratory has two levels, with several branches at
the lower level. There is a sitewide level that is named
“TRANSP.” Policy at this level specifies the CAs that will
be trusted to issue X.509 certificates, the stakeholders for
the other resources, and the location of the use-condition
and attribute certificates. There is also a subordinate level
that contains separate policies for each class of
executables, for example, the production code, test utilities,
a development version of the code, and policies for each
job category (at the moment we have only one job
category). The name of the executable given as an
argument to globus-job-run needs to be mapped to an
Akenti “resource.” We use the following (abbreviated)
mapping file to accomplish this:

Figure 5 shows the portion of an attribute certificate that

asserts a user’s membership in the client group. This
certificate had to have been issued and signed by Lew
Randerson for it to be accepted by the Akenti policy
engine. Note that more than one attribute authority can be
specified in a use-condition.

/bin/date TRANSP/test
/bin/sleep TRANSP/test

TIB2006

 CHEP 03, La Jolla, Mar 24-28, 2003

TUB2006

 <AttributeCert>
 <SubjectAndCA>
 <UserDN>/O=doesciencegrid.org/
 OU=People/CN=Mary R. Thompson
 </UserDN>
 <CADN>/DC=net/DC=es/OU=Certificate
 Authorities/OU=DOE Science Grid
 /CN=pki1
 </CADN>
 </SubjectAndCA>
 <AttrName>group</AttrName>
 <AttrValue>Clients</AttrValue>
</AttributeCert>

Figure 5 Attribute certificate fragment

6. CONCLUSIONS AND FUTURE WORK
The authorization callout from the GRAM job manager

to an Akenti/Globus Toolkit interface module and then to
the Akenti authorization server has allowed the FusionGrid
to add fine-grained control of the compute services that
they are providing. We have experimented with several
ways of writing authorization policy and are currently
using a scheme based on policy for executables and job
classes. So far, the ability of Akenti to support distributed
policy created by multiple remote stakeholders has not
been used because the code owner and the service provider
are the same entity. As a result, all the policy is written by
one person and stored in the local file system of the
resource host. In the future, NFC members may want to
control access to data located at several repositories. In this
case there will be two stakeholders for the data, the owner
of the repository and the owner of the data, each of whom
may want to write policy to control the access to the data.
The availability of a GUI to incrementally add to policy by
creating a new attribute certificate as new members join the
collaboratory has been helpful.

A future goal of the NFC is to provide a high priority
service to time critical computations done in support of
fusion experiments. One simple way to accomplish this is
to write access policy that limits access to the compute
resources to a job class that includes only the critical
computations. The time period during which the would
apply would correspond to the working period of the
experiment, typically 8 am to 5 pm. Akenti policy could be
written to allow only jobs with the priority class to be run
during the these hours and to specify which users are
allowed to submit jobs in that class.

Acknowledgments
We gratefully acknowledge the contributions of Lew

Randerson and Doug McCune of the Princeton Physics
Plasma Lab in helping to formulate the authorization policy
and installing the software at their site. This work was
supported by Department of Energy contract with the
University of California.DE-AC03-76F00515 and the
Mathematical, Information, and Computational Sciences

Division subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, SciDAC Program,
U.S. Department of Energy, under Contract W-31-109-
ENG-38. Technical Report number LBNL-52976.

References
[1] R. Butler, D. Engert, I. Foster, C. Kesselman,

S.Tuecke, J. Volmer, and V. Welch, “A
National-Scale Authentication Infrastructure,”
IEEE Computer, 33(12):60-66, 2000.

[2] Czajkowski, K., I. Foster, N. Karonis, C.
Kesselman, S. Martin, W. Smith, and S.
Tuecke, “A Resource Management Architecture
for Metacomputing Systems,” in 4th Workshop
on Job Scheduling Strategies for Parallel
Processing. 1998, Springer-Verlag. pp. 62-82.

[3] T.Dierks and E.Rescorla. “The TLS protpcol,
version 1, IETF RFC 2246, Jan. 1999

[4] A. J. Ferrari, F. Knabe, M. A. Humphrey, S. J.
Chapin, and A. S. Grimshaw, “A Flexible
Security System for Metacomputing
Environments,” in High Performance
Computing and Networking Europe (HPNC
Europe 99), 1999

[5] I. Foster, C. Kesselman, and S. Tuecke, “The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations,” International J. Supercomputer
Applications, 15(3), 2001.
http://www.globus.org/

[6] I. Foster and C. Kesselman. “Globus: A
Metacomputing Infrastructure Toolkit”,
International Journal of Supercomputer
Applications, 11 (2). 115-129, 1998

[7] R. Housley, W. Polk, W. Ford, and D. Solo,
“Internet X.509 Public Key Infrastructure
Certificate and CRL Profile,” RFC3380, 2001.
http://www.ietf.org/rfc/rfc3380.txt/

[8] K. Keahey, T. Fredian, Q. Peng, D.P. Schissel,
M. Thompson, I. Foster, M. Greenwald, and D.
McCune, “2001 Computational Grids in Action:
The National Fusion Collaboratory,” Future
Generation Computer System, 2001.
http://www.fusiongrid.org

[9] K. Keahey and V. Welch, “Fine-Grain
Authorization for Resource Management in the
Grid Environment,” in Proceedings of
Grid2002 Workshop, 2002.

[10] M. Thompson, A. Essiari, and S. Mudumbai,
“Certificate-based Authorization Policy in a
PKI Environment,” ACM Transactions on
Information and System Security, August 2003.

[11] M. Thompson “Akenti Certificate Schema,”
http://ww-itg.lbl.gov/Akenti/docs/
AkentiCertificate.xsd

[12] Tao, L., “Shifting Paradigms with the
Application Service Provider Model”. IEEE
Computer. 34(10): p. 32-39.

[13] TRANSP, http://w3.pppl.gov/transp

http://www.fusiongrid.org/

	INTRODUCTION
	USAGE SCENARIOS AND REQUIREMENTS
	AUTHORIZATION IN THE GLOBUS TOOLKIT
	Gatekeeper
	Job Manager

	AKENTI AUTHORIZATION SERVICE
	Authorization Model
	Akenti Policy Language

	INTEGRATION OF AKENTI AND JOB MANAGER
	Code Integration
	Authorization Policy
	Policy for the FusionGrid

	CONCLUSIONS AND FUTURE WORK

